Breakdown of Homogenization for the Random Hamilton-jacobi Equations

نویسنده

  • JAN WEHR
چکیده

We study the homogenization of Lagrangian functionals of Hamilton-Jacobi equations (HJ) with quadratic nonlinearity and unbounded stationary ergodic random potential in R, d≥1. We show that homogenization holds if and only if the potential is bounded from above. When the potential is unbounded from above, homogenization breaks down, due to the almost sure growth of the running maxima of the random potential. If the unbounded randomness appears in the advection term, homogenization may or may not hold depending on the structure of the flow field. In (compressible) unbounded gradient flows, homogenization holds in spite of the unboundedness. In (incompressible) unbounded shear flows, homogenization breaks down again due to unbounded running maxima of the flows. Results for random advection follow from a transformation of the problem to that of HJ with random potential. Analogous effective behavior is present for front speeds in reaction-diffusion-advection equations with unbounded random advection, and may have broader implications for wave propagation in random media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment

We study the qualitative homogenization of second-order Hamilton–Jacobi equations in space-time stationary ergodic random environments. Assuming that the Hamiltonian is convex and superquadratic in the momentum variable (gradient), we establish a homogenization result and characterize the effective Hamiltonian for arbitrary (possibly degenerate) elliptic diffusion matrices. The result extends p...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Random homogenization of coercive Hamilton-Jacobi equations in 1d

In this paper, we prove the random homogenization of general coercive non-convex HamiltonJacobi equations in the one dimensional case. This extends the result of Armstrong, Tran and Yu when the Hamiltonian has a separable form H(p, x, ω) = H(p) + V (x, ω) for any coercive H(p). Mathematics Subject Classification (2000) 35B27

متن کامل

Homogenization of Metric Hamilton-Jacobi Equations

In this work we provide a novel approach to homogenization for a class of static Hamilton–Jacobi (HJ) equations, which we call metric HJ equations. We relate the solutions of the HJ equations to the distance function in a corresponding Riemannian or Finslerian metric. The metric approach allows us to conclude that the homogenized equation also induces a metric. The advantage of the method is th...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008